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Abstract. It has been overlooked that-with the exception of especially favourable 
circumstances-the answer seems to be negative. For single-frequency systems, however, 
an averaging procedure is shown to allow for an experimental investigation of the Hannay 
angles. 

1. Introduction 

The Hannay angles were introduced by Hannay [l] in order to draw attention to 
an anholonomy effect in classical mechanics closely corresponding to the Berry phase 
[2, 31 in quantum mechanics. Since the Hannay angles may be given a geometrical 
interpretation [4, 51 they are called geometrical angles. 

In [4] we argued that the experimental verification of the Hannay angles is cum- 
bersome, because it involves, in general, high-precision measurements, as these angles 
are typically small as compared to the dynamical angles. Our main point in this paper 
is that from the point of view of experimental investigations the dynamical angle shifts 
have been unduely neglected. As will be explained, in the case of a general system of 
several degrees of freedom, the Hannay angles seem not to be amenable to direct ex- 
perimental measurement because one has insufficient control over the dynamical angle 
shifts. Nevertheless, even in cases where a direct measurement may not be possible, the 
Hannay angles remain an important theoretical concept. 

The difficulty of measuring the Hannay angles also appears for single-frequency 
systems, but here we shall be able to settle the problem under certain circumstances by 
means of an averaging technique introduced in [6] .  

To be more explicit, we consider a classical Hamiltonian system depending on 
external parameters. Let this system, by fiat, be integrable for each fixed value of these 
parameters. In terms of action-angle variables the Hamiltonian can consequently be 
written as a function of the actions alone. If, however, we allow for a slow and periodic 
time dependence on the parameters, the dynamics in terms of action-angle variables 
( J ,  cp) will be determined by the Hamiltonian 

where &hl  is just the time derivative of the generating function which governs the 
transformation to (J,cp).  E > 0 is a small quantity and T := E C  is slow time. Because 
of the periodic time dependence of the parameters, h, and h ,  are T-periodic in t 
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for some positive T .  Set f ( J ,  cp, T )  := -V,h,, ( J ,  cp, T ) ,  g ( J ,  cp, T )  := V,h, ( J ,  cp, T ) ,  and 
o ( J ,  T )  := V,ho(J,  T ) ;  the Hamiltonian equations of motion are 

The adiabatic Hannay angles are defined for small E > 0 by 

Acp :=.(:) - c p o - ~ T " ~ ( J ( t ) , ~ t ) d t  

II T i c  

where cpo := ~ ( 0 ) .  
In fact, we invoked averaging theory in [4, 61 to explain under what mathematically 

precisely defined circumstances the adiabatic Hannay angles may be replaced by the 
geometrical Hannay angles 

s,' gat ( J ' ,  5 )  dT (3) 

where J o  := J ( 0 )  and g a L ( J ,  T )  := so?". . . g ( J ,  cp, T )  d"q/(271)" and n is the number 
of degrees of freedom. I t  should be noted that in order to determine the geometrical 
Hannay angles one need not solve the Hamiltonian equations (1). It is precisely this fact 
that makes the averaged quantity (3) so useful, for the solution of the non-autonomous 
system (1) cannot, in general, be obtained analytically. 

But how does one determine the Hannay angles experimentally? From (2)  one reads 
off that a measurement of the Hannay angles involves an experimental determination of 
the angle .(TIE). But this does not yet suffice, and in order to find the Hannay angles 
and to compare theory and experiment, the measurement has to be complemented by 
an a priori determination of the dynamical angles SOT'' w ( J ( t ) ,  E [ )  dt. 

However, in general the dynamical angles cannot be easily estimated: neither can 
one solve (1) and determine J(t) explicitly nor can one directly invoke averaging theory. 
In essence, averaging theory [7, 81 can be summarised by saying that (under suitable 
conditions such as, for instance, non-degeneracy) max,,[o,T,el l J ( t )  - JoI is of the order 
& ( E )  (as E --* 0) in the case of a single degree of freedom, and of order c.'(cb), for any 
b E [0, i), in the case of multi-frequency systems. Therefore the naive approximation 
f;'& w(Jo,  e t )  dt to the dynamical angles is too crude (as the the domain of integration 
has length TIE) .  In fact, by means of first-order pertubation theory one can show for 
the simple example h = J 2 / 2  + E cos cp that 

cos cpo 
O ( J O ) ]  dt = T -  + & ( E )  

JO (4) 

and the secular term prevents the right-hand side from vanishing as E + 0. 
So, for this example, the error one obtains when replacing the time-evolved action 

by its initial value inside the dynamical angle is of the same order as the geometrical 
angle AV, i.e. G(1) (as E --* 0). However, this error is of a different nature in so far as 
it is nor geometrical. 
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On the other hand, (4) also suggests a remedy to the problem, namely averaging 
over the initial angles cpo. In other words, upon averaging on the initial torus J o  with 
the Liouville measure one may expect s:'E o ( J o ,  E L )  dt to be a good approximation to 
the dynamical angles. We will prove this expectation to be true for single-frequency 
systems. 

Such an averaging procedure seems also to be acceptable from the experimental 
point of view provided the experimentalist has at his (or her) disposal the possibility 
of preparing the system again and again with one and the same J o  and different 50'. 
This premise, however, restricts the scope of experimental applicability of the proposed 
averaging over the initial torus and limits the extent to which our result has an impact 
on experimental measurements of Hannay angles. One such situation where the idea 
of averaging over initial angles seems not to be applicable is given, for instance, by 
the motion of celestial bodies, since in celestial mechanics one cannot choose initial 
conditions freely. 

For general systems with several degrees of freedom the dilemma is even more 
severe, because our result on averaging over the initial torus will not carry over to 
them. This can be seen by means of a Taylor expansion of o ( J , r )  up to second order 
with respect to J .  Then the second-order term involves the square of the deviation of the 
action from the initial action, i.e. is of the order L.'(cZb), for all b E [0 1) and averaging 
over cpo will not improve the rate of convergence to zero, due to positivity of the square. 
The oscillations in cpo are of no help here: one can only obtain an approximation to the 
dynamical angles with an error of order G ( E ' ~ - ' )  whilst the Hannay angles are an C(1) 
effect. Since b < i, in the adiabatic limit, the error term will exceed the Hannay angles. 
For such general systems it seems rather questionable whether there is an experimental 
method for determining the anholonomy effect discovered by Hannay. In $3 we will 
remark, however, on a special class of systems with several degrees of freedom where 
the results of this paper hold true [9]. 

One might also wonder whether it is possible to invoke Lenard's [lo] and Neishtadt's 
[ l l ]  results on the accuracy of the conservation of the action in the single-frequency 
case. They proved that if a Hamiltonian of a system with one degree of freedom has a 
smooth time dependence that vanishes outside a finite time interval (or at infinity), then 
the overall variation of the action is small to any order in E (or even exponentially). 
For finite times the action may undergo fluctuations of the order of E ,  but this term is 
easily seen to be oscillating in time with zero mean. Therefore Lenard's and Neishtadt's 
result can be used to avoid averaging over initial angles. Their assumption that there be 
no time dependence of the Hamiltonian outside some time interval is, however, rather 
restrictive. In many situations one does not have at one's disposal an experimental 
change of the form of the time dependence. 

As far as the Berry phase is concerned, the averaging procedure described in 
this paper is not necessary. Physically speaking, quantum mechanics already involves 
such an averaging because the phase space functions concentrate on the classically 
invariant phase space manifolds in the classical limit. In particular, for the ergodic 
case convergence to the Liouville measure was proven in [12]. Therefore, in quantum 
mechanics the dynamical phase shifts directly involve the energies E,(T) which arise 
from the stationary Schrodinger equation for frozen parameters, i.e. for fixed T ,  
However, solving this autonomous equation may, of course, present another difficulty. 

Another interesting point concerning the measurement of angles was made by 
Vinti [13] in the case of integrable systems without additional time dependence. He 
points out that the angles cp are abstract angles and their frequencies are not directly 

: 2. ' 
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observable in any other configuration space. However, for conditionally periodic Stuckel 
systems he shows that the time average of the frequencies in the configuration space 
chosen equals the frequencies of cp. Although his proof extends to the time-dependent 
situation considered in this paper, our averaging procedure must be carried out in the 
abstract angles cpo. 

We now summarise the paper. The results dealing with averaging over the initial 
torus in the single-frequency case (theorem 3 and corollary 4) will be stated and proven 
in $2. In $3 we give a few conclusions and remark on some special systems with several 
degrees of freedom as well as on future work [9]. 

2. Averaging over initial angles 

Let us first fix the assumptions under which we will state our theorems. These conditions 
are essentially the same as in [6] except that we require the system to be Hamiltonian. 
This restriction is essential for theorem 3. We work on the phase space M := D x T, 
where D is a bounded open subset of IR and T is the one-dimensional torus (of length 
2 7 ~ ) .  The assumptions on the Hamiltonian h = hn(J ,  T )  + ( J ,  cp, 7 )  are 

(i) hn and h ,  are in C 2 ( M  x [0, TI) ,  
(ii) w # 0 on M x [0, TI. 

The second assumption excludes resonances. 
First we will formulate the adiabatic theorem of classical (Hamiltonian) mechanics 

[7]. Let B c D be an open subset of initial values of J o .  We assume that B has a 
strictly positive distance from the boundary 2D of D. 

Theorem 1 .  Under the above assumptions there exist co > 0, c0 > 0 such that for any 
initial condition ( J o ,  cpo) E B x T, system (1) has a unique solution satisfying 

In [6] we proved an averaging theorem for phase space functions a ( J ,  cp, 7 ) .  In the 
present (Hamiltonian) context this theorem holds when assuming a to be continuous 
and a(., . , T )  to be C ' ( M )  for all T E [0, TI.  Set 

where aav(J, 7 )  := si" a ( J ,  cp, T )  dcp/2n. A(T/ . s )  and A ( T / E )  denote, respectively, the 
time average of the phase space function a ( J ,  cp, 7 )  and of its average over the (fast) 
angular variables. 

Theorem 2. Under the above assumptions there exists c1 > 0 such that for any initial 
condition (Jn,cpo) E B x T one has 

VE I E n .  

Here E,-, is taken from thecwem 1. 
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max 1 ( Lr n ( J ( u ) ,  E U )  du) - J‘ O(Jo, E U )  du O i r i T I &  

Now we may state and prove a theorem crucial for the analysis of the averaged 
behaviour of the dynamical angles, where averaging refers to the initial angles cpo. Such 
an average will be denoted by (.). 

Theorem 3. Let the above assumptions hold and asssume, in addition, that h,(.;,r) is 
C3 for all 7 E [0, TI.  Let R ( J , s )  be C1 on M x [0, TI. Then there exists c2 > 0 such 
that for any initial action J o  E B,  

I C ~ E  V E  I E ~ .  

Again, is taken from theorem 1. 

Proox Set 

A := Lt [R(J(u),&u) - R ( J o , ~ u ) ]  du 

and let dJ := ; I / d J .  Then the adiabatic theorem (theorem 1) gives, always assuming 
that 0 I t I TIE, 

Here and in the following & ( E ) ,  E + 0, is always meant uniformly in t E [0, T/E] and 
J o  E B.  

f do we employ the partial integration method developed in [6]. TO To analyse 
this end we write f in terms of its Fourier series 

where v runs over the (non-zero) integers in 2. The Fourier coefficients are given by 
f,. := JF f ( J ,  cp, 7)e-”’q dcp/27r. A non-oscillatory term does not appear in the Fourier 
series o f f  since this function is a cp derivative. Set Sc := 2 / d c  etc. For v # 0, we have 

Ju f,ei”+’ do = ,: LU f--’:eisq02,. w [exp ( iv  J‘ w dw)] exp ( k v  L‘ g dw) du 

The absolute convergence of the Fourier series is uniform on K x [0, TI, for any 
compact K with B c K c D. One can convince oneself of this fact by adapting the 
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usual proof of absolute convergence of the Fourier series of a periodic C' function. 
Therefore the order of integration and summation may be exchanged and 

Note that both C?,f,/v and 2, f , . / v  are Fourier coefficients of Fourier series whose 
absolute convergence is uniform in ( J ,  T ) .  In fact, if c (J ,  cp, T )  is a continuous function, 
C'  and 2n periodic in cp, and of zero mean, then d ( J ,  cp, 7 )  := j: c ( J ,  8 , 7 )  d8 is also 2n 
periodic in cp and d ( J , c p , r )  = dav(J , t )  + &,c,,(J,r)el"~/iv.  

Now we want to make sure that the U integration in (5) extends only over oscillatory 
terms. Clearly, by the Hamiltonian character of (l),  a,f, = -ivg,,. By the remark of 
the last paragraph, 

Moreover, 

and thus f XI+, freL"+'/v does not contain any non-oscillatory terms. 
All in all, we obtain 

lu f dc = 1 [ "."V] + C ( E )  
,#, I' 1=0 

after having applied theorem 2 to mean zero phase space functions. It is here where 
we need h , ( . ; , 7 )  to be C 3 .  A second application of this theorem (now to the boundary 
term with L' = U) yields 

I r  2,R(J0, E U )  du + a(&). 
I10 

Therefore (A) = c' ( E ) .  

In fact, by inspection of the proofs it becomes obvious that one can weaken the reg- 
ularity assumptions in above theorems. For instance, one order less of differentiability 
with respect to cp will also suffice. 

As far as the averaged time evolution of the dynamical angle is concerned, theorem 
3 has the following consequence. 

Corollary. Let h = h, + &h, satisfy the assumptions of theorem 3. Then there exists 
c3 > 0 such that for any initial action J o  E B ,  
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Here E, is taken from theorem 1. 

This corollary substantiates our claim that for single-frequency systems one may 
replace, upon averaging over the initial torus and up to a small error term, the full action 
inside the averaged dynamical angle by its initial value, thus yielding the possibility of 
an experimental determination of the Hannay angle for such systems (whenever the 
averaging is experimentally feasible). 

3. Conclusion 

As we have shown, in the adiabatic limit the dynamical angles of systems with a single 
degree of freedom are approximated-upon averaging over the initial torus JO-by 
the simpler quantity o ( J o ,  ~ t )  dt. I t  was motivated in the introduction that such a 
statement will, in general, be false for systems with several degrees of freedom. This is 
essentially due to the occurence of resonances. 

Let us mention two examples with several degrees of freedom where one would 
nevertheless expect the situation to be not as bad. The first is a satellite in the 
gravitational field of a slowly rotating oblate (or prolate) planet [4]. And, second, 
Kugler [14] investigated a vibrating string set at an angle with respect to the axis of a 
slowly rotating base (a Foucault pendulum in disguise, as he calls it); cf also [15]. 

Common to both examples is that in terms of coordinates with respect to co-rotating 
frames of reference there appears no explicit time dependence in the unperturbed 
Hamiltonian h,, i.e. h, = h,(J). In subsequent work [9], it will be argued that if 
the unperturbed Hamiltonian h, is not explicitly time dependent then also for multi- 
frequency systems a result in the spirit of theorem 3 holds true for a large (in the sense 
of measure) set of initial values. Basically, such systems are not driven into resonances 
by an outside time dependence and, consequently, pertubation theory allows one to 
prove adiabatic invariance up to order a(@), for all /? E [0,1). 
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